PENERAPAN ALGORITMA GLOWWORM SWARM OPTIMIZATION PADA MODEL GEOGRAPHICALLY WEIGHTED REGRESSION DENGAN KERNEL ADAPTIF
نویسندگان
چکیده
منابع مشابه
Ulepszenia Algorytmu Glowworm Swarm Optimization
Glowworm Swarm Optimization algorithm is applied for the simultaneous capture of multiple optima of multimodal functions. The algorithm uses an ensemble of agents, which scan the search space and exchange information concerning a fitness of their current position. The fitness is represented by a level of a luminescent quantity called luciferin. An agent moves in direction of randomly chosen nei...
متن کاملA Glowworm Swarm Optimization Algorithm Based Tribes
This paper based on the metaphor of specialization and cooperation in steppe tribes of the human society, tribe glowworm swarm optimization (TGSO) algorithm was presented to solve the problem of low precision and easy to fall into local optimization of the glowworm swarm optimization (GSO) algorithm. In the proposed tribe glowworm swarm optimization approach, all glowworms are divided into a ce...
متن کاملC.5 Geographically Weighted Regression
Geographically weighted regression (GWR) was introduced to the geography literature by Brunsdon et al. (1996) to study the potential for relationships in a regression model to vary in geographical space, or what is termed parametric nonstationarity. GWR is based on the non-parametric technique of locally weighted regression developed in statistics for curve-fitting and smoothing applications, w...
متن کاملKlasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E-Jurnal Matematika
سال: 2020
ISSN: 2303-1751
DOI: 10.24843/mtk.2020.v09.i01.p282